Algebra 1 Sem. 2 Lesson: April 7th, 2020

Learning Target:

Students will solve a quadratic equation using the square root method.

In Today's Lesson You Will:

- Warm-up: Connect old with new concepts
- Watch a video lesson about today's topic
- Individual practice (support provided)
- Self Assessment (key included)

Warm-up:

Solve for x .

$$
5 x-7=18
$$

$$
x^{2}=9
$$

Warm-up (key):

Solve for x.

$$
\begin{aligned}
5 x-7 & =18 \\
+7 & \quad+7 \\
5 x & =25 \\
\frac{5 x}{5} & =\frac{25}{5} \quad \begin{array}{l}
\text { Get the } x \text { term by } \\
\text { itself by adding } 7 \text { to } \\
\text { both sides }
\end{array} \\
x & =5
\end{aligned}
$$

$$
\begin{aligned}
x^{2} & =9 \\
\sqrt{x^{2}} & = \pm \sqrt{9} \begin{array}{l}
\text { Square root both sides. This } \\
\text { will give you a positive and } \\
\text { negative solution }
\end{array} \\
x & =3 \text { and }-3 \\
\text { Check: } 3 \cdot 3 & =9 \\
-3 \cdot-3 & =9
\end{aligned}
$$

Watch this Video Lesson: Solving a Quadratic Using the Square Root Method

In this video you will learn:

- What a quadratic equation looks like
- What a quadratic graph can look like
- The number of solutions a quadratic can have
- How to find the solutions using the Square Root Method

Practice
 Go to this website:

 Solve a quadratic using square root method

 Solve a quadratic using square root method}

1. Review and solve the problems on Solve a quadratic using square root method
2. When you square root a number, there will be two solutions (one positive, one negative). For example:

Solve for r.

$$
\begin{aligned}
r^{2} & =36 & & \\
r & = \pm \sqrt{36} & & \text { Take the square ro } \\
r & = \pm 6 & & \text { Simplify } \\
r & =6 \text { or } r=-6 & & \text { Split } \pm \text { into }+ \text { or - }
\end{aligned}
$$

Why is the answer both 6 and -6 ?
Because $6 \times 6=36$

AND

$-6 x-6=36$
3. The solutions you get when you solve the quadratic are the \underline{x}-intercepts or zeros of the parabola. See example with graph below:

Solve for r.

$$
\begin{aligned}
r^{2} & =36 & & \\
r & = \pm \sqrt{36} & & \text { Take the square ro } \\
r & = \pm 6 & & \text { Simplify } \\
r & =6 \text { or } r=-6 & & \text { Split } \pm \text { into }+ \text { or }-
\end{aligned}
$$

More Practice
 Go to this website:

Solving a quadratic function using square root method

1. Review and solve the problems on Solving a quadratic function using square root method Note: The "smaller x " will be the negative solution and the "larger $x^{\prime \prime}$ will be the positive solution
2. You may see a problem that is written in function form like this:

$$
\begin{aligned}
& g(x)=-10 x^{2}+490 \\
& -10 x^{2}+490=0 \quad \text { First, set the function equal to zero }
\end{aligned}
$$

$$
-10 x^{2}=-490 \quad \text { I subtracted } 490 \text { on both sides }
$$

$$
x^{2}=49 \quad \text { I divided both sides by }-10 \text { to get to this step }
$$

The last step is not shown. Just square root 49 to get $x=7$ and -7

Self Assess: Try these on your own, then check with the key.

Solve each quadratic equation.

1. $\mathrm{x}^{2}=16$
2. $2 x^{2}=50$
3. $\mathrm{x}^{2}-25=-21$
4. $3 \mathrm{x}^{2}+2=29$
5. $-6 \mathrm{x}^{2}=-216$
6. $3-4 x^{2}=-193$

Create a quadratic equation that would have solutions of 4 and -4.

Answer Key:

Once you have completed the problems, check your answers here.
Solve each quadratic equation.

1. $\mathrm{x}^{2}=16$
2. $2 x^{2}=50$

$$
x=4,-4
$$

3. $\mathrm{x}^{2}-25=-21$

$$
x=5,-5
$$

$$
x=2,-2
$$

4. $3 x^{2}+2=29$

$$
\text { 5. } \begin{aligned}
& -6 x^{2}=-216 \\
& x=6,-6
\end{aligned}
$$

6. $3-4 x^{2}=-193$

$$
x=7,-7
$$

Create a quadratic equation that would have solutions of 4 and -4.

There are many possible answers. Here is just one example.

$$
x^{2}+7=23
$$

